
1

A Scalable Software Architecture Booting and
Configuring Nodes in the Whitney Commodity

Computing Testbed1

Samuel A. Fineberg

NAS Technical Report NAS-97-024
October 1997

MRJ Technology Solutions
Numerical Aerodynamic Simulation

NASA Ames Research Center, M/S 258-6
Moffett Field, CA 94035-1000

Abstract

The Whitney project is integrating commodity off-the-shelf PC hardware and soft-
ware technology to build a parallel supercomputer with hundreds to thousands of
nodes. To build such a system, one must have a scalable software model, and the
installation and maintenance of the system software must be completely auto-
mated. We describe the design of an architecture for booting, installi ng and config-
uring nodes in such a system with particular consideration given to scalability and
ease of maintenance. This system has been implemented on a 40-node prototype of
Whitney and is to be used on the 500 processor Whitney system to be built in
1998.

1. Work performed under NASA Contract NAS 2-14303

2

1.0 Introduction

Recent advances in “commodity” computer technology have brought the
performance of personal computers close to that of workstations. In addition,
advances in “off-the-shelf” networking and operating system technology have
made it possible to design a parallel system made purely of commodity
components, using a public domain operating system, at a fraction of the cost of
MPP or workstation components. The Whitney project, at NASA Ames
Research Center, attempts to integrate these components in order to provide a
cost effective parallel testbed.

While the cost/performance benefits of using commodity components may be
clear, there are also obvious problems in scaling such a system to more than a
couple of dozen nodes. One of the key issues in building such a system is design-
ing a node installation and management software that scales. This issue, while it
may seem to be secondary, is in fact vital to building a serviceable and useful
MPP system. For example, when 100 nodes are delivered, how long does it take
to integrate and install them. Also, when a node fails, how hard is it to swap in a
new system to replace it. If it takes 20 minutes to install a new node, it would
take a week to install a 500 node system. Therefore, we must build a software
system that is automatic, requires minimal system operator intervention, and
allows spare nodes to acquire their identity easily. Further, we must do this with-
out requiring the node to have a keyboard or monitor installed, since providing
these would be expensive and would require prohibitive amounts of space in a
large system.

In this paper an architecture for such a system is described. This system is
currently working in the 40-node Whitney prototype and it has been designed to
be scalable to the next Whitney system, with around 500 nodes. While there are
likely to be additional scalabili ty issues that will appear as Whitney grows, the
prototype system works well and is designed in such a way that additional
capacity can be added if necessary.

The rest of this paper is organized as follows. Section 2 describes the overall
architecture of Whitney, both hardware and software. In Section 3, trade-offs in
designing a boot/configuration architecture are described as well as the specific
architecture design utili zed in Whitney. Finally, Section 4 describes future work
and additional scalabilit y issues that may be faced in the final Whitney design.

2.0 Whitney System Architecture
As an experiment in using commodity technologies, Whitney is designed to take
advantage of low cost node hardware as well as public domain software and
operating systems. To date, we have chosen to use the Linux OS and Intel Pen-
tium Pro processor based systems. However, the architecture of Whitney is not
dependent on the operating system or on the node hardware. Instead, we concen-
trate on a design that is flexible and that does not rely on any uncommon hard-

3

ware or software features. This means that the Whitney design could be built on
top of almost any UNIX system or Windows NT utili zing any stand alone system
(i.e., workstation or PC).

2.1 Hardware

The Whitney hardware architecture is shown in Figure 1. Whitney consists of a

large set of compute nodes, each of which is a small desktop system. Therefore,
each node contains a hard disk, memory, a floppy drive, etc. Some of these nodes
have special functions, as determined by Whitney’s system software, and may also
have additional disk (for I/O nodes), network connections, compiler software, etc.
The Whitney nodes are all attached using an interconnection network, and files
reside on either a front end node or on a parallel file system that is built on top of
the I/O nodes. The target configuration for Whitney is 50 processors in Fiscal Year
(FY) 1997, 500 processors in FY 1998, and 5000 processors in FY 1999/2000.

Currently, Whitney consists of 36 compute nodes, 3 I/O nodes, and 1 front end
node. The compute nodes are configured as follows:

• Intel Pentium Pro 200MHz/256K cache

• ASUS P/I -P65UP5 motherboard, Natoma Chipset

• ASUS P6ND CPU board

• 128 MB 60ns DRAM memory

• 2.5 GB Western Digital AC2250 hard drive

• Trident ISA graphics card (used for diagnostic purposes only)

Network

Front End Nodes

I/O Nodes

Compute
Nodes

Compute
Nodes

Figure 1: Whitney system architecture block diagram

4

They also contain at least one DEC “ tulip (21140)” based Fast Ethernet card and
a Myrinet card. The final interconnection network for Whitney is still under
design. Whitney attempts to deliver the most performance per dollar, so we have
been evaluating a number of commodity and special purpose networks including
Fast Ethernet and Myrinet. The ideal network will be scalable to 1000’s of nodes
and will deliver adequate performance for the lowest cost. For more information
on this evaluation see [BeN98, PeF97].

The I/O nodes are similar to compute nodes except that they contain 256MB
RAM, two Pentium Pro processors, and two 9GB SCSI disks. The Front end
node is a single processor system with 128MB RAM, a 4GB SCSI disk, and a
second Fast Ethernet connection for routing to the general NAS network and the
Internet.

2.2 Operating System Architecture

While the hardware architecture for Whitney is relatively simple, there were
some major challenges in designing a manageable base software architecture for
such a large system. First, we had to decide on what type of an operating system
we would run on each node. If some sort of distributed operating system was uti-
li zed, as in the OSF/1 AD on the Intel Paragon [Int93, Zaj93], there would be a
large amount of overhead for coordinating system nodes. This would almost cer-
tainly overload the network and result in poor system performance as the system
scaled to a large number of nodes. Another approach would be to run a small
bootstrap loader on each node, as in the iPSC/860 [Int91] or SUNMOS [Rie94,
Whe94] on the Intel Paragon. This approach scales, but leaves the processing
nodes with limited I/O capabilit y, i.e., the nodes can not open network connec-
tions outside of the machine and nodes can not have local disk or virtual mem-
ory. Another issue that exists with both the distributed OS approach and the
bootstrap loader approach is maintainability. Neither of these models is utili zed
in a widely deployed system, so the operating system would have to be built spe-
cifically for Whitney, or ported to Whitney. In addition, we could not benefit
from the economies of scale derived from using a workstation or PC operating
system.

The approach that was taken was to utili ze a widely deployed off the shelf UNIX
based operating system, Linux, on all nodes throughout the system. While the
basic operating system is consistent, the components installed differ depending
on node functionality. Compute nodes contain a stripped down version of the
system, containing only those components needed for running application codes,
i.e., run-time libraries, shells, debuggers, etc. I/O nodes also have a stripped
down version of the system, with the addition of the I/O server software. The
front end systems have all of the necessary compilers, editors, etc., needed to
build application codes for the compute nodes.

While this basic approach has been used to build scalable systems in the past
such as the IBM SP-2 and the Meiko CS-2 [CaF96], making such a system

5

maintainable with 100’s (much less 1000’s) of nodes is still difficult. One of the
main pieces we have chosen to use for integrating the system is the Portable
Batch System1 (PBS). In its “parallel aware” form, PBS daemons run on each
node. They start user jobs, make sure jobs complete correctly, enforce resource
limitations, and measure resource usage. This is far more scalable than a “single
system image” because only the actual parallel jobs need to be managed as an
ensemble. Further, it distributes the system management tasks and puts the more
system oriented functions on the actual node they control while still maintaining
a central task scheduler.

3.0 Booting, Configuring, and Maintaing Compute Nodes
One of the major scalabilit y bottlenecks in systems such as Whitney is how to go
from an unconfigured node, as delivered from the manufacturer, to a fully con-
figured compute node. Another problem is; how does one upgrade a compute
node when a new version of the operating system becomes available? Finally,
what does one do when a node fails? Whitney’s approach to these problems is to
treat compute nodes (though not necessarily I/O and front end nodes) as inter-
changeable components. Every node has exactly the same operating system and
system software on their hard disk, and other than two files which contain the
node’s identity, there is no way to distinguish between nodes. This makes main-
tenance much easier. When a node fails one can simply replace it with another
one, only the two files must be changed. Then, hardware failures can be diag-
nosed after the bad node has been replaced, leaving the main system functional.
However, there are still many problems that need to be solved for this approach
to work.

3.1 Loading and configuring node software

Assuming you have 500 PCs; how do you make them Whitney nodes? The
software could be loaded off of a CDROM, floppies, or the network. A CDROM
would work, but then you would have to build a custom CDROM for Whitney
and each node would need its own drive (unless if you wanted to move a portable
drive 500 times). Floppies are not practical because it would require dozens to
load a functional system. The answer, of course, is to install through the network,
which is already attached to every node. However, to make this system
manageable, we still need to ensure that nodes can be installed with the minimal
amount of operator intervention. For example, if it takes an operator 1 minute per
node it requires 8.5 hours to install a 500 node system, if it takes 10 minutes per
node it will t ake 3.5 days. Therefore, Whitney nodes should be able to install and
configure themselves automatically. Install ing and configuring nodes
automatically on a network is quite possible, but in order to do so, the server
must be able to tell the identity of a node in order to set its two unique files
correctly and to prevent network address conflicts.

1. For more information see http://science.nas.nasa.gov/Software/PBS

6

One approach is to burn some unique identifier in to the system’s ROM. This
information can then be exchanged with the server to determine the node’s
identity (e.g., the UNIX “BOOTP” protocol). This approach works, but it
requires someone to create hundreds of unique ROMs. Instead of these unique
system ROMs, one could use ethernet addresses (which are unique identifying
numbers burned in to ROM) to identify a node. Unfortunately, the problem with
both of these approaches is that the system administrator will be forced to
manage a list of hundreds (or thousands) of obscure numbers. When a node fails,
the operator would have to change a number in some table with the identifier of
the spare to be swapped in, or the ROM or ethernet card from the failed node
would have to be swapped with the spare. This poses a major impediment to
system maintainability, and the initial configuration of the system would be
daunting.

Another approach is to dynamically assign node identity. Then, as nodes come
on line they could be assigned their network address and that address wil l last
only until they are turned off or go down. The server would manage a pool of
addresses and allocate/deallocate them as necessary. This approach scales well ,
however, it has one major drawback. That is, when a node fails, how do you tell
which node is down? Normally, the way a node failure is detected is when a node
stops responding to the network. If node addresses are dynamically assigned,
there is no way to tell where a node resides physically from its network address.
This is less of a problem with a small system, but with hundreds of systems it
would be virtually impossible to troubleshoot node failures if node addresses are
not static.

The final approach, which was adopted for Whitney, is to have a device that
identifies a node that can be easily moved between systems (i.e., it does not
require the system’s case to be opened). When a node fails, one must simply
move this device to the new system and it will magically take on the identity of
the failed node. One such device is a ROM that can be attached through a
parallel or serial port (e.g., a software lock like the HASP1). The problem is that
these are expensive and they would require some sort of custom “BOOTP” style
server. We have still not eliminated this approach as a possibility, but for the
early stages of Whitney, we instead decided to use a 3.5” floppy disk as the
uniquely identifying device. This has several advantages. Floppies are cheap and
easily created. We can even use Whitney nodes to create their own floppies or
new floppies for other systems. Second, floppies can hold real files, so we
actually store the two unique node files on the floppy and they can simply be
copied to the Whitney node upon booting. Finally, if you also use this floppy for
booting, the system can be booted even when there is no data on the system’s
disk without requiring a special network boot BIOS. There are also some
disadvantages to floppies. They wear out, they can be erased or corrupted, and
we stil l do have to create one for each system as part of the initial system install.

1. see http://www.hasp.com

7

However these issues are easily overcome with some proactive maintenance
(i.e., frequent creation of spares and floppy replacement).

Once a node has its identity, installi ng and configuring node hardware is fairly
simple. Workstations have had this capabilit y for many years. The only special
requirements that Whitney must adhere to are that the installation process must
be completely automated. However, this is fairly easy since all nodes are to be
configured identically. In the next section the actual boot/install /configure
process implemented on Whitney is described.

3.2 The boot/configure architecture of Whitney

When a node is booted, there are several possibili ties. It can be fully installed
and configured, it can have some information on its hard disk, but not be fully
configured, or it can have a blank hard disk. To eliminate the need for operator
intervention when installi ng Whitney nodes, the Whitney nodes can boot regard-
less of their previous state. If a node has a blank hard disk, a node disk image is
automatically copied to the node disk. If a node’s disk is valid, the node is re-
configured based on both the node specific information contained on the boot
floppy and other configuration scripts on the server. A block diagram of this pro-
cess is shown in Figure 2.

Referring to Figure 2, nodes boot from their floppy drive. The floppies must
therefore contain the most recent kernel as well as the node’s TCP/IP
configuration information and the Linux bootstrap loader (LILO). Normally
when linux is booted, only a single device can be specified for the root
filesystem. Linux therefore boots and attempts to mount root from a partition on
the first IDE disk /dev/hda. However, because we did not want to assume that
disks must be configured before booting, we modified the Linux kernel such that
it will attempt to mount an NFS root if the first attempt to mount a root
filesystem fails.

Assume that a disk starts out blank. When Linux attempts to mount it, the mount
will fail . Then, we instead mount a special NFS root filesystem. This NFS root
continues to boot and then runs a special install script. The install script first
checks if a count of the number of unsuccessful installs (stored on the floppy) is
too high. This prevents nodes from installing forever in the case of a bad disk. If
this check succeeds, a disk image is copied from the file server on to the root
filesystem (/dev/hda). This disk image is simply a minimal installation of Red
Hat Linux without any modifications from what comes off the Red Hat CD. All
changes to this base image are made in other scripts. By not modifying the CD
install image, we can easily generate a new disk image, and all changes from this

8

base image are self documented by the scripts that make them. Table 1
summarizes the names and functions of the various scripts used to configure
Whitney nodes.

After the initial disk image is copied to the root disk, the “pre-install” script
performs a generic set of one time configuration changes. These changes are

Node boots
Linux from
Floppy

Mount

Mount
successful

Yes

No

/dev/hda as /

Mount NFS /
from server

How
Many
Failures

>limit shut down node
(give up)

copy disk image
from server to
/dev/hda

Perform one time
configuration
Add 1 to failure
count
Reboot

Copy network
configuration
from floppy

Apply Whitney
specific changes
to base system

Update kernel
on floppy, reset
failure count

Update system
files

Node is up!

Figure 2: Whitney node boot time configuration process

9

Whitney specific, but are not specific to the particular node being installed. The
types of changes made at this point are those that are either one time changes that
can not be repeated, or changes that are needed to make the boot procedure work
after the root disk is installed. For example, the /usr/admin directory (where
Whitney specific files are NFS mounted) is created, initial /etc/hosts and
/etc/passwd files are copied to the root disk, and the “setup-early” script is
copied to the root disk. Upon completion of the initial node configuration, the
node is rebooted (now with a valid filesystem on its hard disk).

After the node reboots, the Linux kernel is once again loaded from the node’s
floppy. However, this time when the system attempts to mount /dev/hda, it
succeeds. The node then begins booting normally. Before the node’s network
comes up, it runs the “setup-early” script. This script copies network
configuration information from the floppy to the node’s hard disk. It also
performs any other configuration steps that are needed before the node’s network
comes up (e.g., setting up routing tables).

Finally, the node brings up its network as well as remote (NFS mounted)
filesystems. Then it runs the “setup-late” script. This script performs any other
node configuration, and updates all global configuration files and scripts from
the copies kept on the file server.

The setup-early and setup-late scripts are run every time a node is booted with a
valid filesystem. Therefore, they must perform their changes in a way that is not
affected by whether the changes have already been made or not. Further, they
must replace any files that may have been set incorrectly in the past (e.g., if we
change a node’s IP address by moving boot floppies, all of the old networking
files must be replaced with the new ones).

Table 1: Whitney installation scripts

Script
Network

state
Root

device location Description

pre-install up NFS

install root on
server
(located in
/export/roots)

One time changes and changes
needed to bootstrap self configura-
tion process.

setup-early down /dev/hda node root disk

Changes needed to configure net-
work, i.e., copy TCP/IP configura-
tion from floppy. Also, floppy
maintenance (check floppy file sys-
tem, reset install count).

setup-late up /dev/hda
/usr/admin
NFS filesys-
tem on server

Copy system files from /usr/admin
to appropriate directories, update
floppy kernel from /usr/admin,
make other necessary changes,
update setup-early script from
/usr/admin.

10

After running “setup-late,” the node is ready and configured. This procedure
works well i n most cases. However, if nodes become corrupted without actually
destroying the file system, this may not work. In these cases, an operator must
intervene, however, the only intervention needed to fix a corrupted node is to
force it to re-install it self. We do this by booting a special disk that contains a
small li nux kernel and file system. When this disk boots it runs a script that
corrupts the first hard drive’s superblock, thus triggering the node to re-install
itself on the next boot.

Once in operation, if changes need to be made to the compute nodes, these must
be done in one of the three setup scripts. Then, the change can either be made
manually or the nodes can be rebooted to make the change. If changes are not
made in the scripts, they will li kely disappear the next time a node is rebooted.
While this may seem like a hassle, it enforces careful integration of changes and
makes the scripts self documenting. This type of careful management of node
configuration and easy reproducibilit y of changes is vital to operate a large
system.

4.0 Additional Scalability Issues
The major scalabilit y bottleneck in this design, assuming the network is ade-
quate, is the server. Even with a 40 node system, if all nodes simultaneously try
to install their internal disks at once the system will fail . To alleviate this prob-
lem, we try to prevent more than 10 nodes from simultaneously installi ng. This,
however, may be a problem with a larger system because each install takes about
10 minutes. Therefore, in a larger system it wil l be important to replicate the
server on several alternate server nodes. Then, depending on the location on the
system’s network, the nodes must install from one of the multiple servers. This is
relatively easy since the boot disk not only contains the node’s TCP/IP informa-
tion, but also the address of the node’s boot/install server. The only time this may
be a problem is if the system does not have all nodes on the same TCP/IP subnet
with their server. If this is the case, TCP/IP routing must be set up prior to the
nodes booting. Therefore, it is recommended that in the final Whitney there be at
least some network in the system that connects nodes to servers without any
routing.

Another possible bottleneck is in the use of NFS to run user jobs. While it may
be possible to perform low bandwidth I/O across NFS with 500 nodes, it may not
work. We will not necessarily be able to determine whether this strategy will
work until the large system is buil t. If NFS does not work properly, it will be
necessary to stage user files on to the nodes prior to execution. Also, until the
parallel file system is available it will be necessary to stage files generated
during job execution off of the nodes’ local filesystems. Fortunately this facil ity
is already built in to PBS.

11

5.0 Conclusions and Future Work
We have described an architecture for maintaining system software on a com-
modity cluster based system. The system consists of a floppy disk containing a
node’s kernel and identification information, a server that contains both the ini-
tial installation image for each node as well as updated system configuration
files, and a set of scripts that keep the nodes’ configuration up to date regardless
of its previous state. This system is designed for maximal scalabil ity and ease of
maintenance. While there will li kely be additional issues encountered when
building the 500 processor Whitney system, this work should form a good basis
for the final software implementation.

6.0 References
[BeN97] J. Becker, B. Nitzberg, and R. Van der Wijngaart, “Predicting cost

performance trade-offs for Whitney: a commodity computing clus-
ter,” 31st Hawaii International Conference on Systems Science, to
appear, January 1998.

[CaF96] T. L. Casavant, S. A. Fineberg, M. L. Roderick, and B. H. Pease,
“Massively Parallel Architectures,” in Parallel Computers, Casavant,
Tvrdik, Plasil eds., IEEE Computer Society Press, Los Alamitos, CA,
pp. 11-71, 1996.

[Int88] Intel Scientific Computers, “The iPSC/2 system,” Third Conference
on Hypercube Concurrent Computers and Applications, pp. 843-846,
January 1988.

[Int91] Intel Supercomputing Systems Division, iPSC/2 and iPSC/860
Users’ Guide, Intel Corporation, Beaverton, OR, 1991.

[Int93] Intel Paragon XP/S User’s Guide, Intel Supercomputing Systems
Division, Beaverton, OR, October 1993.

[PeF97] K. T. Pedretti and S. A. Fineberg, “Analysis of 2D torus and hub
topologies of 100Mb/s ethernet for the Whitney commodity comput-
ing testbed,” NAS Tech. Report NAS-97-017, NASA Ames Research
Center, September 1997.

[Rie94] R. Riesen et. al., Experience in implementing a parallel fil e system,
Sandia National Laboratory, 1994

[Whe94] S. Wheat et. al., “PUMA: an operating system for massively parallel
multicomputers,” Proceedings of the Twenty-Seventh Annual Hawaii
International Conference on System Sciences, 1994.

[Zaj93] R. Zajcew et. al., “An OSF/1 Unix for massively parallel multicom-
puters,” 1993 Winter USENIX, January 1993.

12

NAS TECHNICAL REPORT
Title:
A Scalable Software Architecture Booting and
Configuring Nodes in the Whitney Commodity
Computing Testbed

Author(s):
Samuel A. Fineberg

Reviewers:
“ I have carefully and thoroughly reviewed this
technical report. I have worked with the author(s)
to ensure clarity of presentation and technical accu-
racy. I take personal responsibility for the quality
of this document.”

Signed: ________________________

Name: _Jeff Becker______________

Signed: ________________________

Name: _Parkson Wong___________

Two reviewers
must sign.

After approval, as-
sign NAS
Report number.

Branch Chief:

Approved: _____________________________

Date: NAS Report Number:

